BT-4/M-20 FLUID MECHANICS-II

 CE-206-E

 CE-206-E}

34020

Time : Three Hours]
[Maximum Marks : 100
Note AttemptFive questions in all, selecting atneeast question from each Unit. All questions carry equal marks. Assume any missing data.

Unit I

1. (a) Derive an equation for laminar flow around a sphere i.e. Stokes' law used in the fluid medoanics.
(b) Whattios you understandy Couetteflow and Hafien-Poiseullalow equations? Differentiate between them.
2. (a) Define Reynolds' number. Draw a graph of variation of Ca versus Reynolds' number for a dydinder.
(b) A compound pipe system consists of 1800 m of $0.5 \mathrm{~m}, 1400 \mathrm{~m}$ of 0.40 m and 700 m of 0.30 m new Cl pipes connected in the series. Convert the systemto an equivalentengthof 0.4 m and equivalent size of pipe 3600 m long. 10
(2)L-34020

Unit II

3. (a) Calculate the total drag, shear drag and pressure drag exerted on 1 m length circular cylinder which has a diameterequal to 40 mm , air density $1.3 \mathrm{~kg} /$ Pnflowing past the cylinder with velocity $4 \mathrm{~m} / \mathrm{min}$. The total drag coefficient is equal to 1.4 and shear drag coefficient is equal tol ©.19.
(b) What is meantby Magnuseffect? How does circulation originate around an airfoil PO
4. (a) Show that for a trapezoidal chânnel of given area of flow, the condition of maximum flow requires that hydraulic mean depth is equal to one half of depth of flow.
(b) Explain the working of standing wave flume with a neal isketch.

Unit III

5. (a) What do you mean by Mach number ? Explain its significance dompressible flstedidies.10
(b) A volumeof air at atmospheripressureof $101.04 \mathrm{kN} / \mathrm{m}^{7}$ absoluteand $24^{\circ} \mathrm{C}$ is compressed adiabaticallyo a gagepressuref $3.09 \times 10^{\circ}$ $\mathrm{N} / \mathrm{m}^{2}$. Calculate the final volume. 10
(2)L-34020
6. (a) How to measure discharge of a compressible fluid? Explain its procedure.

10
(b) A rocket travels in air of pressure $1.03 \mathrm{Jt} \mathrm{kg} / \mathrm{cm}$ $15 \div \mathrm{C}$ at a velocity of $1750 \mathrm{~km} / \mathrm{hour}$. Find the Mach numbeand the Mach angle. Take $=1.4$ and $\mathrm{R}=29.27 \mathrm{~m} /{ }^{\circ} \mathrm{K}$. 10

Unit IV

7. (a) A water turbine develops 134 kW at 235 rpm under a head of 17 m . Determine scale ratio and speed of a similar machine which will generate 600 kW when working under a head 10026 m.
(b) Explainwith sketchesunctionsof scroll casing, stay vafes and guide vanes for a reaction turbine.
8. (a) Explain the working principle of reciprocating pump with sketches.

10
(b) What are different efficiencies of centrifugal pump? Explain thenoriefly.

10
(2)L-34020

3

